
Let Me Make This Clear (Things That Plenty
of DB2 for z/OS People Get Wrong)

Robert Catterall
IBM

Session Code: A15
May 26, 2016 9:15 AM | Platform: DB2 for z/OS

Photo by Steve from Austin, TX, USA

https://upload.wikimedia.org/wikipedia/commons/c/c2/Downtown_Austin_pano_(6428992801).jpg

Introduction

• In the course of my work, I get a lot of questions from a lot of
DB2 for z/OS people

• Some of these questions suggest
widespread misunderstanding of
certain DB2 features and functions

• In this presentation, I’ll highlight
some of these misunderstandings
and provide (I hope) some clarity
• I’ll highlight misunderstandings in dark red italics

2

Robert,

Could you clear

something up for me?

Agenda

• zIIP offload and native SQL
procedures

• zIIP offload and dynamic SQL

• Selective query parallelism

• Java stored procedures

• High-performance DBATs

• RELEASE(DEALLOCATE) “break-in”

• Buffer pool monitoring

• Group buffer pool monitoring

• Page-fixed buffer pools and 1 MB
page frames

• Inactive DBATs versus inactive
connections

• Partition-by-growth and smaller
tables

• Dynamic versus ad-hoc SQL

• DB2 address space prioritization

• DB2-managed archiving versus
system-time temporal

• The IBM Data Server Driver versus
DB2 Connect

• DB2 Connect versus z/OS Connect

3

zIIP offload and native SQL procedures

• A lot of people are under the impression that native SQL procedure
execution is always zIIP-eligible

• In fact, native SQL procedure execution is only zIIP-eligible when
the caller is a DRDA requester – in other words, when the CALL
comes through DDF
• Why? Because zIIP eligibility depends on a process running under a

preemptible SRB versus a TCB or a non-preemptible SRB

• A native SQL procedure runs under the task of the process that called it, and
when the caller is a DRDA requester, that task is a preemptible SRB in the
DB2 DDF address space – that makes the native SQL procedure zIIP-eligible

4

?

More on native SQL procedure zIIP eligibility

• When a native SQL procedure is called by a process that runs under
a TCB (e.g., a CICS transaction or a batch job), it will run under that
TCB and so will not be zIIP-eligible

• Question: if a DRDA requester calls an external DB2 stored
procedure, and that stored procedure calls a native SQL procedure,
will the native SQL procedure’s execution be zIIP-eligible?
• Answer: NO, because an external stored procedure always runs under its

own TCB in a stored procedure address space, and the nested native SQL
procedure will run under that TCB and so will not be zIIP-eligible

5

TCB Preemptible SRB

Note: when an external stored procedure is called by a DRDA requester, you will see a little zIIP
offload, because associated send/receive processing is done under preemptible SRB in DDF

Still on the topic of native SQL procedures and zIIPs

• Some people think that native SQL procedures, when they are zIIP-
eligible, are 100% zIIP-offload-able

• Nope – when a native SQL procedure is zIIP-eligible (i.e., when it is
called by a DRDA requester), it will be up to 60% zIIP-offload-able
• Why? Because SQL statements that execute under preemptible SRBs in the

DB2 DDF address space are up to 60% zIIP-offload-able, and a native SQL
procedure is just SQL

• An implication: going from SQL DML statements issued directly from DRDA
clients to packaging SQL DML in native SQL procedures is not a way to
boost zIIP offload, since the SQL is up to 60% zIIP-offload-able either way

• You can boost zIIP offload when you change external stored procedures called
by DRDA requesters to native SQL procedures

6
zIIP offload-o-meter

zIIP offload and dynamic SQL

• Some people have this idea that there’s something about dynamic
SQL that affects zIIP offload-ability

• The zIIP eligibility of a SQL statement – whether dynamic or static,
depends on the type of task under which the statement executes
• Preemptible SRB: zIIP-eligible

• TCB: not zIIP-eligible

• Note: SQL statements issued by DRDA requesters (or by native SQL
procedures called by DRDA requesters) aren’t the only ones that
run under preemptible SRBs
• When a query – static or dynamic – is parallelized by DB2, the “pieces” of the

spilt query run under preemptible SRBs and are up to 80% zIIP-offload-able

7

zIIP

“Look the same to me”

Selective query parallelism

• Some people are interested in DB2 query parallelism as a means
of getting zIIP offload for processes, such as batch jobs, that
have “local” (i.e., not through DDF) connections to DB2, but…
• …they think that there is no good option for granular control of query

parallelism

• Think that, for dynamic SQL, either ALL queries are made candidates for
parallelization via specification of CDSSRDEF=ANY in ZPARM, or queries are
selectively made candidates for parallelism via SET CURRENT DEGREE = ‘ANY’

• Think that, for static SQL, only option is bind of package with DEGREE(ANY)

• Think that, for all queries, maximum degree of parallelization is whatever is
specified for PARAMDEG in ZPARM

• What these people don’t know about is the SYSQUERYOPTS
table in the DB2 catalog

8

“What’s that?”

More on SYSIBM.SYSQUERYOPTS

• Introduced with DB2 10 for z/OS in new-function mode

• Used in conjunction with the BIND QUERY command and the
SYSIBM.SYSQUERY table

• Lets you specify that a specific query (static or dynamic) is to be a
candidate for parallelization, along with a maximum degree of
parallelization for that specific query – with NO code changes needed

• Here’s a blog entry with more details:
http://robertsdb2blog.blogspot.com/2016/02/statement-level-control-of-db2-for-zos.html

9

“OK, static query ABC can be parallelized,
with a maximum degree of 4.

Dynamic query XYZ can be parallelized,
with a maximum degree of 8.”

Java stored procedures

• I’ve seen 2 misunderstandings pertaining to Java stored procedures:
• They’re a bad idea: they perform poorly and are CPU and memory hogs

• They are 100% zIIP-offload-able

• The “poor-performing, resource hog” view likely has roots in the
situation of not-too-many years ago, which has changed
• z/OS is now a great Java environment: 1200% performance improvement

from Java 5 on a z9 mainframe to Java 7 on an EC12

• Even better performance with Java 8 on a z13, thanks to features such as SIMD
(Single Instruction Multiple Data) and SMT (Simultaneous Multi-Threading)

• And, Java doesn’t “hog” memory – it exploits large memory resources (as
does DB2 for z/OS), and z Systems memory gets cheaper all the time

• And, DB2 11 delivered important enhancements for Java stored procedures

• One 64-bit multi-threaded JVM per Java stored procedure address space, versus a
single-threaded 31-bit JVM per Java stored procedure in an address space

10

Java stored procedures and zIIP eligibility

• No, they are not 100% zIIP-eligible
• Yes, Java code execution in a z/OS system is zIIP-eligible, but SQL is not Java,

so SQL statements issued by a Java stored procedure are not zIIP-eligible

• Recall that SQL statements are zIIP-eligible when they execute under a
preemptible SRB – SQL statements issued by a Java stored procedure execute
under the TCB of the Java stored procedure

• In truth, you would likely get a small amount of zIIP offload for SQL statements
issued by a Java stored procedure, because the zIIP engine used to execute the
procedure’s Java code is “held on to” for a little while when SQL starts executing

11

zIIP offload-o-meter

High-performance DBATs

• Some people think, “We can’t use high-performance DBATs, because
we wouldn’t be able to get ALTERs and BIND/REBIND stuff done”

• It is true that any combination of persistent threads (i.e., threads
that persist through COMMITs) and RELEASE(DEALLOCATE) packages
can interfere with ALTER, BIND/REBIND, and more, but…
• …you have to keep in mind that these operations might be specifically blocked

by high-performance DBATs, as opposed to being generally blocked

• For example, if package PKG1 is bound with RELEASE(DEALLOCATE) and is
allocated to a high-performance DBAT, and the package is not dependent on table
T1, an ALTER of T1 will not be blocked because of package PKG1

• If you determine that an ALTER (or BIND/REBIND, or online REORG that would
materialize a pending DDL change) would be blocked by a high-performance
DBAT, use command to temporarily “turn off” high-performance DBATs:

• -MODIFY DDF PKGREL(COMMIT)

12

Hi-Perf

More on RELEASE(DEALLOCATE) and concurrency

• Some think they can’t use RELEASE(DEALLOCATE) packages at
all – not with high-performance DBATs, not with anything –
because they will cause concurrency problems

• First, get the concurrency facts straight
• Does RELEASE(DEALLOCATE) cause page or row locks to be retained

until thread deallocation?

• NO – X locks on pages and rows are always released at COMMIT; S locks are
typically released when DB2 moves to the next page or row

• Table space locks are held longer with RELEASE(DEALLOCATE) – is that a
problem?

• Generally speaking, NO, because table space locks are almost always of the
intent variety (e.g., IX, IS), and intent locks do not interfere with each other

• DB2 utilities have long been able to “break in” on RELEASE(DEALLOCATE)
packages, by way of drain locking (claims are always released at COMMIT)

13

DB2 11 and RELEASE(DEALLOCATE) “break in”

• The real concurrency concern has been related to packages
• A package cannot be replaced or invalidated when it is in use

• A RELEASE(DEALLOCATE) package is considered to be continuously in-
use as long as the thread to which it is allocated exists

• That being the case, it used to be that any operation that would
replace or invalidate package XYZ would fail if package XYZ were bound
with RELEASE(DEALLOCATE) and allocated to a persistent thread

• Failing operation could be a BIND/REBIND, an ALTER, or an online REORG
that would materialize a pending DDL change

• This changed with DB2 11 (in new-function mode)
• If a BIND/REBIND, ALTER or pending DDL-materializing online REORG

would be blocked by a RELEASE(DEALLOCATE) package allocated to a
persistent thread, DB2 can “break in” to let blocked operation proceed

• Package’s behavior will be temporarily changed to RELEASE(COMMIT)

14

A little more on RELEASE(DEALLOCATE) “break-in”

• Some people think that this is only important for
RELEASE(DEALLOCATE) packages
• Not so – in addition to switching package behavior to RELEASE(COMMIT),

the new DB2 11 functionality will “drain” package to get its use count to 0

• That provides relief from blockages caused by RELEASE(COMMIT) packages
that would otherwise be “always in use” due to frequency of execution

• Some folks think that this applies to all kinds of persistent threads
• They’re actually half right

• RELEASE(DEALLOCATE) “break-in,” as it pertains to “in-DB2” threads, does apply
to all types of persistent threads, high-performance DBATs included – the
package’s behavior will be changed to RELEASE(COMMIT) at next commit

• That said, “break-in,” as it pertains to threads that are not processing in DB2 but
have RELEASE(DEALLOCATE) packages allocated to them, is something that does
NOT apply to high-performance DBATs

• So, even with DB2 11, it’s best to issue -MODIFY DDF PKGREL(COMMIT) to clear
out high-performance DBATs as needed for DBA tasks

15

Buffer pool monitoring

• Lots of people think that the “hit ratio” is the key metric when it
comes to buffer pool monitoring and tuning

• As far as I’m concerned, the hit ratio is of very little value

• I’d much rather focus on a buffer pool’s total read I/O rate
• That’s total synchronous reads plus total prefetch reads (sequential, list,

dynamic) for a buffer pool, per second

• Can get these numbers from DB2 monitor statistics long report or online display
of buffer pool activity, or from DB2 command -DISPLAY BUFFERPOOL DETAIL

• What’s your objective for a buffer pool?

• Total read I/O rate < 1000 per second is good, < 100 per second is great

• Of course, for a buffer pool used to “pin” one or more objects (i.e., cache them
in memory in their entirety), your objective is a total read I/O rate of zero

16

Group buffer pool monitoring

• Some think that the only metrics that matter are the “double zeroes”
(0 directory entry reclaims, 0 write failures due to lack of storage)

• These are indeed important, but another valuable metric is often
overlooked: the “XI read hit ratio”
• That’s the percentage of the time that synchronous read requests directed to a

GBP because of local buffer cross invalidation (XI) resulted in “page found”

• (sync reads due to XI, data returned) / (total sync reads due to XI)

• Numbers can be found in DB2 monitor statistics long report or online display of GBP
activity, or via DB2 command -DISPLAY GROUPBUFFERPOOL MDETAIL

• Buffer invalidations happen when directory entry reclaims occur, and when a
page cached locally by DB2 member X is changed on member Y

• If there are no directory entry reclaims, buffer invalidations must be due to pages
being changed on other members of the data sharing group

• If a page was changed on another DB2 member, it had to have been written to the
GBP – when you go to the GBP looking for that page, you’re hoping it’s still there

17

This is a hit ratio that does matter to me

More on the GBP XI read hit ratio

• The more data entries there are in a GBP, the longer pages written
to the GBP will stay there, and the higher the XI read hit ratio will go
• I’ve often seen XI read hit ratios above 80%, even above 90%

• GBP XI read hits are good, because a GBP read will generally be two orders of
magnitude faster than a disk read

• If ALLOWAUTOALT(YES) is specified for a GBP in the CFRM policy,
check the GBP’s ratio of directory entries to data entries
• Default ratio is 5:1

• I’ve seen ratios in excess of 250:1 with ALLOWAUTOALT(YES) in effect

• If you see a super-high ratio of directory entries to data entries for a GBP, one
effect may be a low XI read hit ratio

• If that’s the case, consider enlarging the GBP (given sufficient CF memory)
and changing the ratio of directory to data entries to something closer to 5:1

• Low XI read hit ratio no big deal if few GBP reads due to XI (e.g., < 1000/hour)

18

Page-fixed buffer pools and 1 MB page frames

• Some people think that page-fixing buffers is only good for buffer
pools that have a high read I/O rate

• It is good for such pools (because they make I/Os cheaper), but it is
also good for high-activity pools, IF the buffers can reside in 1 MB
real storage page frames (true even if pool has low read I/O rate)
• I’d say that a pool with more than 1000 GETPAGEs/second is “high activity”

• Availability of 1 MB page frames depends on the value of the LFAREA
parameter in the IEASYSxx member of SYS1.PARMLIB

• When a buffer pool is defined with PGFIX(YES), DB2 will automatically seek
to have the pool backed by 1 MB page frames

• Why 1 MB page frames are good for high-activity pools: they make
translation of virtual storage to real storage addresses more CPU-efficient

19

1 MB

Inactive DBATs versus inactive connections

• LOTS of people think that DBATs go “inactive” when they are not
being used – the DB2 documentation even refers to inactive DBATs

• In fact, DBATs do not go inactive
• It’s connections that go inactive when they are not in use

• When a transaction using a “regular” DBAT (as opposed to a high-
performance DBAT) completes, the DBAT goes into a disconnected – not an
inactive – state

• What’s important: a disconnected DBAT (a DBAT in the DBAT pool) takes up
a thread “slot” – it counts towards the MAXDBAT limit

20

D
B

A
T

“I’m not inactive –
I’m disconnected”

Partition-by-growth and smaller tables

• Some people think that partition-by-growth table spaces are
only appropriate for large tables

• Not so
• People under this impression may be influenced by the word “partition,”

which traditionally (before universal table spaces) was associated with
large tables

• A PBG table space’s DSSIZE (smallest value is 1 GB) is the space-used
value that triggers allocation of an additional partition for the table space

• A small table won’t grow to the DSSIZE value, so the PBG will be a one-
partition table space

• The DSSIZE value doesn’t determine disk space utilization – that’s
determined by amount of data in table, PRIQTY, and SECQTY

21

OK Also OK

Dynamic versus ad-hoc SQL

• Some DB2 people use the terms interchangeably, and end up
opposing applications that will issue dynamic SQL because that’s
equated with ad-hoc SQL
• Result: developers can get the impression that their applications are not

wanted on the z Systems platform (not good)

• Yes, ad-hoc SQL is dynamic, but the reverse is not necessarily true
• Consider a Java application that would access DB2 data via JDBC calls

• That’ll be dynamic SQL on the DB2 side, but more than likely the queries are
hard-coded in the Java programs – not ad-hoc

• Keep in mind that “static” SQL is a DB2 concept – many current developers
who don’t have a mainframe heritage are not familiar with this concept

• Bottom line: don’t paint all dynamic SQL with the same brush

• Most important: developers should know that their applications are welcome
on the DB2 for z/OS platform

22

DB2 address space prioritization

• At plenty of sites, one or more DB2 address spaces are given a
too-low priority in the z/OS system’s WLM policy
• Result is degraded throughput for DB2-accessing applications

• First of all, IRLM should be assigned to the super-high-priority
SYSSTC service class
• When IRLM has work to do, it needs a processor right away; otherwise,

lock acquisition and release is delayed

• IRLM uses very little CPU, so no worries about it getting in the way of other
address spaces if it has a higher priority than those other address spaces

• Should any other DB2 address spaces be assigned to SYSSTC?
• I say, “No” – remember what “Syndrome” said in “The Incredibles?”

23

“When everyone is super, no one will be”

Prioritizing DB2 address spaces other than IRLM

• DIST and any stored procedure address spaces should have the same
priority as MSTR and DBM1, and that should be below SYSSTC but a
little higher than CICS AORs (or IMS message regions)
• Some people give these DB2 address spaces a priority below CICS AORs, fearing

that the DB2 address spaces will block CICS access to processors

• In fact, if DB2 tasks wait behind CICS tasks for processor time, CICS-DB2 transaction
performance will suffer (CICS monitor will show higher “wait for DB2” times)

• Some people give the DIST address space (DDF) a lower priority than other DB2
address spaces, fearing that a higher priority will be too high for SQL coming
through DDF

• In fact, the priority of the DIST address space applies only to the DDF system tasks,
and these use very little CPU

• The priority of SQL statements coming through DDF depends on the service class
(or classes) to which DDF-using applications are mapped in the WLM policy – if
they are not mapped to a service class, they get discretionary priority by default

24
Very low

Prioritizing DB2 address spaces other than IRLM (cont’d)

• At some sites, DB2 stored procedure address spaces are given a
lower priority than other DB2 address spaces, because people
don’t want DB2 stored procedures executing at a too-high priority
• In fact, the priority at which a DB2 stored procedure executes is inherited

from the process that calls the stored procedure

• If a stored procedure address space has a too-low priority, that can result
in delays in scheduling called stored procedure for execution (that, in turn,
negatively impacts the performance of the callers of stored procedures)

• Note: native SQL procedures, like external stored procedures, run at the
priority of the calling process, but they execute in DBM1 under the caller’s
task

25

DB2-managed archiving vs. system-time temporal

• Some people get DB2-managed archiving (introduced with DB2 11)
and system-time temporal support (DB2 10) mixed up

• That’s understandable – both are forms of archiving, if what you
mean by “archiving” is long-term retention of historical data
• With system-time temporal, a base table has an associated history table, and

the history table holds the “before” image of rows that were made non-
current via UPDATE and DELETE operations

• Implemented to enable viewing of data in a “current as of (some date)” fashion

• With DB2-managed archiving, a base table has an associated archive table,
and the archive table holds rows that are current (i.e., still in effect) but
relatively old and relatively infrequently accessed

• Implemented to improve performance of retrieval of “newer” rows

• For both features, DB2 can make the base and “adjunct” tables appear to
programs to be one logical table

26

The IBM Data Server Driver vs. DB2 Connect

• Some people think that DB2 Connect gateway servers are the way
to go

• Those people may think that way because they don’t know about
a better alternative: the IBM Data Server Driver
• Simplified IT infrastructure, better performance

• Eliminates a “hop” between application server and DB2 for z/OS, as IBM Data
Server Driver is of the “type 4” variety – straight to DB2 from the app server

• Lighter weight client, easier to configure and upgrade versus DB2 Connect

• How can you get the IBM Data Server Driver?
• Easy: if you’re licensed for DB2 Connect, you are entitled to use the Data

Server Driver

• Exception: DB2 Connect concurrent user license
requires use of DB2 Connect gateway server

27

IBM Data
Server Driver

A little more on the IBM Data Server Driver

• Functionality-wise, just about everything in DB2 Connect is also
provided by the IBM Data Server Driver – for example:
• Connection pooling

• Transaction pooling

• Sysplex workload balancing

• Drivers for lots of languages (not just Java and C# .NET, but others, too,
including Perl, Python, PHP, Ruby…)

• About the only exception of which I’m aware: if an application
requires 2-phase commit capability and the application server
uses a dual-transport processing model, DB2 Connect is needed
• WebSphere Application Server, among others, uses a single-transport

processing model

28

DB2 Connect versus z/OS Connect

• Some people are unclear as to the difference between DB2 Connect
(and the IBM Data Server Driver) and z/OS Connect

• DB2 Connect (and the Data Server Driver) continue to do what they
have long done:
• They enable applications to access DB2 for z/OS data over a network

connection, using industry-standard relational database interfaces such as
JDBC and ODBC

• In other words, they enable these applications to be DRDA requesters

• z/OS Connect, newer on the scene, allows client applications to
invoke z/OS-based services (e.g., CICS and IMS transactions, and
DB2 stored procedures) in the form of APIs
• These APIs are invoked by clients using REST calls (i.e., they are RESTful

services), and data payloads are in JSON format

29

A little more on z/OS Connect and DB2 for z/OS

• DB2 for z/OS supports z/OS Connect V1
• A client application could use a REST call to invoke an API

that would in turn drive execution of a SQL statement
(which could be a stored procedure CALL)

• DB2 for z/OS support for z/OS Connect V2 is not
yet there, but is in the works
• This support will be delivered in a way that complements

and leverages the native REST support that is being built
into the DB2 for z/OS Distributed Data Facility

30

CICS

IMS

WebSphere

DB2

z/OS Connect

API

APIAPI

Robert Catterall
IBM
rfcatter@us.ibm.com

Let Me Make This Clear (Things That Plenty
of DB2 for z/OS People Get Wrong)

Please fill out your session

evaluation before leaving!

Photo by Steve from Austin, TX, USA

https://upload.wikimedia.org/wikipedia/commons/c/c2/Downtown_Austin_pano_(6428992801).jpg

